Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA‐AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources

نویسندگان

  • Easan Drury
  • Daniel J. Jacob
  • Robert J. D. Spurr
  • Jun Wang
  • Yohei Shinozuka
  • Bruce E. Anderson
  • Antony D. Clarke
  • Jack Dibb
  • Cameron McNaughton
  • Rodney Weber
چکیده

[1] We use an ensemble of satellite (MODIS), aircraft, and ground‐based aerosol observations during the ICARTT field campaign over eastern North America in summer 2004 to (1) examine the consistency between different aerosol measurements, (2) evaluate a new retrieval of aerosol optical depths (AODs) and inferred surface aerosol concentrations (PM2.5) from the MODIS satellite instrument, and (3) apply this collective information to improve our understanding of aerosol sources. The GEOS‐Chem global chemical transport model (CTM) provides a transfer platform between the different data sets, allowing us to evaluate the consistency between different aerosol parameters observed at different times and locations. We use an improved MODIS AOD retrieval based on locally derived visible surface reflectances and aerosol properties calculated from GEOS‐Chem. Use of GEOS‐Chem aerosol optical properties in the MODIS retrieval not only results in an improved AOD product but also allows quantitative evaluation of model aerosol mass from the comparison of simulated and observed AODs. The aircraft measurements show narrower aerosol size distributions than those usually assumed in models, and this has important implications for AOD retrievals. Our MODIS AOD retrieval compares well to the ground‐based AERONET data (R = 0.84, slope = 1.02), significantly improving on the MODIS c005 operational product. Inference of surface PM2.5 from our MODIS AOD retrieval shows good correlation to the EPA‐AQS data (R = 0.78) but a high regression slope (slope = 1.48). The high slope is seen in all AOD‐inferred PM2.5 concentrations (AERONET: slope = 2.04; MODIS c005: slope = 1.51) and could reflect a clear‐sky bias in the AOD observations. The ensemble of MODIS, aircraft, and surface data are consistent in pointing to a model overestimate of sulfate in the mid‐Atlantic and an underestimate of organic and dust aerosol in the southeastern United States. The sulfate overestimate could reflect an excessive contribution from aqueous‐phase production in clouds, while the organic carbon underestimate could possibly be resolved by a new secondary pathway involving dicarbonyls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America

[1] Quantitative evaluation of chemical transport models (CTMs) with aerosol optical depth (AOD) products retrieved from satellite backscattered reflectances can be compromised by inconsistent assumptions of aerosol optical properties and errors in surface reflectance estimates. We present an improved AOD retrieval algorithm for the MODIS satellite instrument using locally derived surface refle...

متن کامل

A comparison of CMAQ-based aerosol properties with IMPROVE, MODIS, and AERONET data

[1] Evaluation of concentrations predicted by air quality models is needed to ensure that model results are compatible with observations. In this study aerosol properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations are compared with routine data from NASA satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard ...

متن کامل

The MODIS Aerosol Algorithm, Products and Validation

The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range (0.41 to 15 μm). These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickn...

متن کامل

Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing

[1] We assess the relationship of ground-level fine particulate matter (PM2.5) concentrations for 2000–2001 measured as part of the Canadian National Air Pollution Surveillance (NAPS) network and the U.S. Air Quality System (AQS), versus remotesensed PM2.5 determined from aerosol optical depths (AOD) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multiangle Imagin...

متن کامل

Aerosol distribution in the Northern Hemisphere during ACE-Asia: Results from global model, satellite observations, and Sun photometer measurements

[1] We analyze the aerosol distribution and composition in the Northern Hemisphere during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001. We use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model in this study, in conjunction with satellite retrieval from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on EOS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010